Footnotes:
Non-Diagonal Proofs:
Enumerations in different language systems
Page last updated 14 Feb 2023
Cantor’s Diagonal proof is a very well-known proof which demonstrates that there is no enumeration (see one-to-one correspondence) of real numbers within a well-defined mathematical system. On this page we show that there is another very different method of proving that, given a well-defined mathematical system S, there cannot be an enumeration function within that system S, and which enumerates all real numbers within that system S, as follows:
Enumerations within the system
First we assume that there can be an enumeration function
- symbols for numbers (which we will call digit symbols, for example 0,1,2,3,4,5,6,7,8,9)
and - other symbols (non-digit symbols).
The total information content of an expression thus depends on these two types of symbols. The digit symbols contain object information - information about the objects of the system, in this case numbers. The non-digit symbols contain syntactical information, which deals with information regarding relationships between the objects of the expression.
Now, according to the definition of
This means that the assumption of the existence of the enumeration function
Enumerations outside of the system
That leaves the question of an enumeration function that is defined outside of the system S. Clearly, a dictionary style lexicographical enumeration function
We can observe that any such lexicographical enumeration function
Information content is language dependent
This is why all references to enumeration functions in general should make it abundantly clear as to whether the enumeration function being talked about is within the system or outside of the system. The failure to do so explains many of the conundrums, contradictions and paradoxes that are prevalent in current mathematics.
Note that the matter of the quantity of non-digit symbols is not relevant when the enumeration function is defined outside of the system S. The function
The crucial point is that sequences of symbols, of themselves, have no specific information content - any information content that can be extracted from a sequence of symbols can only be done by reference to the rules and grammar of a specific system. Indeed, the same sequence of symbols can have a particular information content within one language system, and a completely different information content within a different language system.
Outside of the system S, the information required to define the lexicographical sequences of signals of S is finite, since the object information is simply the finite set of symbols of the system S, while the same syntactical information applies for the definition of the entire lexicographical enumeration, and hence also for each individual instance. No information is required other than the order in which the symbols occur in the sequence, and there is no correlation whatsoever of that information within the meta-language to the information content of these sequences as seen within the system S, where the syntactical information content of the sequences depends completely on the axioms and rules of inference of that system S.
Enumerations of other entities
While the above paragraphs refer to enumerations of real numbers, the same principles are directly applicable to certain other infinite sets of entities of a given mathematical system, an example for the case of recursive functions can be seen at Errors in incompleteness proofs by Kleene and Rogers.
Rationale: Every logical argument must be defined in some language, and every language has limitations. Attempting to construct a logical argument while ignoring how the limitations of language might affect that argument is a bizarre approach. The correct acknowledgment of the interactions of logic and language explains almost all of the paradoxes, and resolves almost all of the contradictions, conundrums, and contentious issues in modern philosophy and mathematics.
Site Mission
Please see the menu for numerous articles of interest. Please leave a comment or send an email if you are interested in the material on this site.
Interested in supporting this site?
You can help by sharing the site with others. You can also donate at where there are full details.