Footnotes:
The Power Set Proof
Page last updated 11 Mar 2022
The Power Set proof is a proof that is similar to the Diagonal proof, and can be considered to be essentially another version of Georg Cantor’s proof of 1891, (Footnote:
Georg Cantor, ‘Über eine elemtare Frage de Mannigfaltigkeitslehre’, Jahresberich der Deutsch. Math. Vereing. Bd. I, S. pp 75-78 (1891). An English translation of the original can be seen at Cantor’s original 1891 proof.)
and it is usually presented with the same secondary argument that is commonly applied to the Diagonal proof. The Power Set proof involves the notion of subsets. A subset of a set is a set that includes some or all of the elements of a given set. In standard set theory, given a set
The Power Set proof states that, given a set
The usual version of the proof as is commonly used today is as follows:
We start with an initial assumption; the object of the proof is to prove that this assumption cannot be correct. The assumption is that there is a function, which we call
1.
We now define a set, that we call the set
2.
It follows that
3.
It follows that this set
4.
But it is also the case that the set
5.
Now, since the element
6.
But this results in a contradiction, since the definition of the set
7.
Therefore the original assumption that there can be some matching function
And as for the Diagonal proof, this proves that there can be no function that gives a one-to-one correspondence of the elements of a set and the subsets of a set, where the function is in the same language as the definitions of the sets.
However, it says nothing about the case where the function
By the argument of the proof, if
On the page Diagonal proof, there is a detailed analysis of the fallacious assumption that different levels of language can be ignored in such proofs (see the secondary argument of the Diagonal proof) and the same analysis applies also to the Power set proof, and so the analysis will not be repeated on this page. See also A List with no Diagonal number, and Proof of more Real numbers than Natural numbers.
When the Power Set proof is divested of any Platonist assumptions concerning the ‘existence’ of things independently of language, the proof only proves that there cannot be a matching function
For more on Platonism see Platonism, The Myths of Platonism, Platonism’s Logical Blunder, Numbers, chairs and unicorns and the posts Moderate Platonism and Descartes’ Platonism.
Rationale: Every logical argument must be defined in some language, and every language has limitations. Attempting to construct a logical argument while ignoring how the limitations of language might affect that argument is a bizarre approach. The correct acknowledgment of the interactions of logic and language explains almost all of the paradoxes, and resolves almost all of the contradictions, conundrums, and contentious issues in modern philosophy and mathematics.
Site Mission
Please see the menu for numerous articles of interest. Please leave a comment or send an email if you are interested in the material on this site.
Interested in supporting this site?
You can help by sharing the site with others. You can also donate at where there are full details.